Acta Cryst. (1995). C51, 1180-1182

Pyrylium Salts. VII. 2,4,6-Triphenylpyrylium Trichloroacetate

Romana Anulewicz and Bożena Świrska

Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

PIOTR MILART

Department of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland

(Received 21 June 1994; accepted 2 November 1994)

Abstract

The structure of $C_{23}H_{17}O^+$. $C_2Cl_3O_2^-$ has been determined. The three benzene rings are planar, but tilt from the plane of the pyrylium ring at angles of 14.9, 23.7 and 6.1°, respectively. The C—C bond length in the anion is much longer than expected [1.579 (7) Å]. The aromatic character of the pyrylium ring is discussed.

Comment

As a continuation of our studies of substituent effects on the molecular geomery of 4'-substituted 2,4,6-triphenylpyrylium salts (Turowska-Tyrk, Krygowski, Milart, Butt & Topsom, 1991; Turowska-Tyrk, Krygowski & Milart, 1991; Krygowski, Anulewicz, Pniewska & Milart, 1991; Turowska-Tyrk, Anulewicz, Krygowski, Pniewska & Milart, 1992), we investigated crystals of the title compound to confirm the older data on the unsubstituted derivative (Tamamura, Yamane, Yasuoka & Kasai, 1974). The difference in anion does not significantly affect the molecular geometry of the cationic moiety. The aromatic character of the pyrylium ring, as estimated by its HOMA index (Krygowski, 1993), is 0.501, comparable with the value of 0.514 found for the unsubstituted species (Tamamura, Yamane, Yasuoka & Kasai, 1974) and higher than those of the NMe₂ (Turowska-Tyrk, Krygowski & Milart, 1991) and OH (Turowska-Tyrk, Anulewicz, Krygowski, Pniewska & Milart, 1992) derivatives, for which the HOMA values are 0.297 and 0.447, respectively. Evidently, electrondonating substituents increase the localization of double bonds in the pyrylium ring, reducing its aromatic character. The electron-accepting substituents NO₂ (Turowska-Tyrk, Krygowski, Milart, Butt & Topsom, 1991) and COOH (Krygowski, Anulewicz, Pniewska & Milart, 1991) increase the aromaticity of the pyrylium ring slightly; the HOMA values are 0.573 and 0.581, respectively.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

The trichloroacetate anion has relatively short CO bonds [1.225 (6) and 1.233 (6) Å] and an anomalously long C—C bond [1.579 (7) Å]. This effect may be readily explained in terms of the Walsh-Bent rule (Bent, 1961). The more electronegative $-CCl_3$ group polarizes the sp^3 hybrid orbital along the C7—C8 bond into the $sp^{3+\delta}$ state. This is associated with a decrease of the 2p contribution in the sp^2 hybrid orbitals of the C— O bonds to the $sp^{2-\delta/2}$ state. As a result, lengthening of the C—C bond, shortening of the C—O bonds and an increase of the O—C—O bond angles should be observed. Such expected changes are confirmed by the observed bond lengths and angles.

Fig. 1. View of the molecule showing the atomic numbering system. Ellipsoids are drawn at the 50% probability level.

Experimental

Crystal data $C_{23}H_{17}O^+.C_2Cl_3O_2^ M_r = 471.77$ Monoclinic $P2_1/c$ a = 12.513 (2) Å b = 17.356 (3) Å c = 10.172 (2) Å $\beta = 102.660$ (3)°

Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 25 reflections $\theta = 10-28^{\circ}$ $\mu = 4.062$ mm⁻¹ T = 293 (2) K Prism

Acta Crystallographica Section C ISSN 0108-2701 ©1995

V = 2155.4 (7) Å ³	$0.32 \times 0.32 \times 0.28 \text{ mm}$	Table 2. Selected geometric parameters (Å, °)			
Z = 4	Yellow	CI1—C8	1.761 (5)	C22—C23	1.383 (7)
$D_x = 1.454 \text{ Mg m}^{-3}$		C13—C8	1.768 (5)	C23C24	1.367 (8)
-		C12C8	1.754 (5)	C24—C25	1.386 (7)
		02 — C7	1.225 (6)	C25—C26	1.378 (6)
B		O3—C7	1.233 (6)	C41—C46	1.391 (6)
Data collection		C7—C8	1.579 (7)	C41—C42	1.393 (6)
Kuma KM-4 diffractometer	$\theta_{\rm max} = 59.99^{\circ}$	01—C2	1.352 (5)	C42—C43	1.390 (7)
uDA scans	$h = -14 \times 14$	01—C6	1.355 (5)	C43—C44	1.369 (7)
	$h = -14 \rightarrow 14$	C2C3	1.358 (6)	C44—C45	1.380 (7)
Absorption correction:	$k = 0 \rightarrow 20$	C2C21	1.464 (6)	C45—C46	1.379 (7)
none	$l = 0 \rightarrow 12$	C3-C4	1.400 (6)	C61—C66	1.390 (7)
2563 measured reflections	3 standard reflections	C4—C5	1.406 (6)	C61-C62	1.395 (6)
2563 independent reflections	monitored every 100	C4C41	1.466 (6)	C62—C63	1.375 (7)
2454 chearved reflections	reflections	C5-C6	1.362 (6)	C63-C64	1.380 (8)
2434 Observed Tenections	Tenections		1.430 (0)	C04-C05	1.307 (8)
$[I > 2\sigma(I)]$	intensity decay: $<5\%$	$C_{21} - C_{20}$	1.388 (0)	00)-000	1.3/0(/)
		C21-C22	1.391 (0)		
		02	131.0 (5)	C22—C21—C2	120.6 (4)
Definition		02	114.5 (4)	C23C22C21	120.1 (5)
Kejinemeni		03-07-08	114.5 (4)	C24—C23—C22	119.9 (5)
Refinement on F^2	$\Delta a_{max} = 0.568 \text{ e} \text{ Å}^{-3}$	C/C8C12	111.9 (3)	C23-C24-C25	120.5 (5)
$P[F^2 > 2\sigma(F^2)] = 0.0681$	$\Delta q_{1} = 0.835 q Å^{-3}$	C/C8CII	107.1 (3)	C26—C25—C24	120.1 (5)
$R[I^{\prime} > 20(I^{\prime})] = 0.0001$	$\Delta p_{\rm min} = -0.855 \mathrm{e} \mathrm{A}$	Cl2 - C8 - Cl1	111.8 (3)	$C_{25} - C_{26} - C_{21}$	119.8 (4)
$wR(F^2) = 0.17/0$	Extinction correction:	C/-C8-C13	113.0 (3)	C46 - C41 - C42	119.0 (4)
S = 1.053	SHELXL93 (Sheldrick,	$Cl2 - C\delta - Cl3$	106.5 (3)	C40 - C41 - C4	120.2 (4)
2558 reflections	1993)	C1 - C8 - C13	100.5 (3)	C42 - C41 - C4	120.8 (4)
208 narameters	Extinction coefficient:	01 - 02 - 03	121.9 (3)	C43 - C42 - C41	119.6 (4)
Only II store U's referred	0.0007(2)	01 - 02 - 03	112.0.0 (4)	$C_{44} - C_{43} - C_{42}$	120.3 (3)
Only H-atom U s renned	0.0007(2)	C_{1}^{-} C_{2}^{-} C_{21}^{-}	112.0(3)	C43 - C43 - C43	120.0 (3)
$w = 1/[\sigma^2(F_o^2) + (0.0956P)^2]$	Atomic scattering factors	$C_{2} - C_{2} - C_{2}$	127.1(4) 1204(4)	$C_{40} - C_{43} - C_{44}$	120.2 (3)
+ 5.1989 <i>P</i> 1	from International Tables	$C_2 - C_3 - C_4$	120.4(4)	C45C40C41 C66C61C62	120.3(4) 118 7 (4)
where $P = (E^2 + 2E^2)/3$	for Crystallography (1992	$C_{3} - C_{4} - C_{3}$	117.0(4) 1215(4)	C66 C61-C6	120.0 (4)
where $I = (I_0 + 2I_c)/3$	Val C Tables 4269 and	$C_{5} - C_{4} - C_{41}$	121.3(+) 120.8(4)	C62_C61_C6	120.9(4)
$(\Delta/\sigma)_{\rm max} < 0.001$	vol. C, Tables 4.2.0.8 and	C5C4 C6C5C4	120.5 (4)	C63_C62_C61	120.4 (4)
	6.1.1.4)		119 5 (4)	C62-C62-C64	120.1(4) 120.4(5)
		01-06-061	113.0 (3)	C65-C64-C63	119.9 (5)
		C5-C6-C61	127.5 (4)	C64—C65—C66	120.4 (5)
		C26C21C22	119.7 (4)	C65-C66-C61	120.5 (5)

Table	1. Fractional	atomic c	oordinates	and	equival	ent
	isotropic di	splacemen	t paramete	ers (Å	²)	

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	Ζ	U_{eq}
Cll	0.8280 (2)	0.52119 (14)	0.4160 (2)	0.1387 (11)
C13	0.78493 (12)	0.64852 (8)	0.2389 (2)	0.0700 (5)
C12	0.89305 (14)	0.52002 (11)	0.1583 (3)	0.1130 (9)
02	0.5987 (3)	0.5494 (2)	0.1741 (5)	0.0725 (12)
03	0.6849 (3)	0.4387 (2)	0.1530 (4)	0.0622 (10)
C7	0.6783 (4)	0.5070 (3)	0.1834 (5)	0.0440 (11)
C8	0.7918 (4)	0.5468 (3)	0.2445 (5)	0.0466 (12)
01	0.7690 (2)	0.3686 (2)	0.7057 (3)	0.0340 (7)
C2	0.7026 (3)	0.4012 (2)	0.7785 (4)	0.0314 (9)
C3	0.6340 (3)	0.3566 (2)	0.8324 (4)	0.0352 (10)
C4	0.6304 (3)	0.2768 (2)	0.8118 (4)	0.0332 (10)
C5	0.6981 (3)	0.2456 (2)	0.7316 (4)	0.0342 (10)
C6	0.7678 (3)	0.2918 (2)	0.6815 (4)	0.0329 (9)
C21	0.7173 (3)	0.4847 (2)	0.7922 (4)	0.0341 (10)
C22	0.8086 (4)	0.5202 (3)	0.7619 (5)	0.0440 (11)
C23	0.8231 (5)	0.5989 (3)	0.7787 (5)	0.0558 (14)
C24	0.7475 (5)	0.6418 (3)	0.8252 (5)	0.0551 (14)
C25	0.6557 (4)	0.6071 (3)	0.8545 (5)	0.0499 (12)
C26	0.6410 (4)	0.5287 (3)	0.8394 (4)	0.0394 (11)
C41	0.5628 (3)	0.2266 (2)	0.8764 (4)	0.0334 (10)
C42	0.4717 (4)	0.2557 (3)	0.9178 (5)	0.0436 (11)
C43	0.4128 (4)	0.2084 (3)	0.9866 (5)	0.0539 (13)
C44	0.4442 (5)	0.1336 (3)	1.0151 (5)	0.0547 (13)
C45	0.5336 (4)	0.1041 (3)	0.9731 (5)	0.0498 (13)
C46	0.5914 (4)	0.1498 (2)	0.9022 (5)	0.0407 (11)
C61	0.8448 (3)	0.2688 (2)	0.6002 (4)	0.0351 (10)
C62	0.8616 (4)	0.1910 (3)	0.5766 (4)	0.0412 (11)
C63	0.9341 (4)	0.1697 (3)	0.4995 (5)	0.0503 (12)
C64	0.9914 (4)	0.2250 (4)	0.4455 (5)	0.0578 (14)
C65	0.9755 (5)	0.3013 (3)	0.4681 (6)	0.063 (2)
C66	0.9036 (4)	0.3235 (3)	0.5457 (5)	0.0558 (14)

Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL93* (Sheldrick, 1993).

119.7 (4)

We thank Professor T. M. Krygowski for helpful discussions. This work was supported by research grant BW-1219/24/94.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: HU1130). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

C26—C21—C2

- Bent, H. A. (1961). Chem. Rev. 61, 275.
- Krygowski, T. M. (1993). J. Chem. Inf. Comput. Sci. 33, 70-78.
- Krygowski, T. M., Anulewicz, R., Pniewska, B. & Milart, P. (1991). J. Phys. Org. Chem. 4, 121-124.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Tamamura, T., Yamane, T., Yasuoka, N. & Kasai, N. (1974). Bull. Chem. Soc. Jpn, 47, 832–837.
- Turowska-Tyrk, I., Anulewicz, R., Krygowski, T. M., Pniewska, B. & Milart, P. (1992). Pol. J. Chem. 66, 1831–1841.

Turowska-Tyrk, I., Krygowski, T. M. & Milart, P. (1991). J. Mol. Struct. 263, 235-245.

Turowska-Tyrk, I., Krygowski, T. M., Milart, P., Butt, G. & Topsom, R. D. (1991). J. Mol. Struct. 245, 289-299.

Acta Cryst. (1995). C51, 1182-1184

11,12-Seco-12,13-didehydromultiflorine Perchlorate Hydrate

GRZEGORZ DUTKIEWICZ, MACIEJ KUBICKI AND TERESA BOROWIAK

Laboratory of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

WALERIA WYSOCKA

Laboratory of Stereochemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

(Received 5 July 1994; accepted 14 October 1994)

Abstract

The structure of 11,12-seco-12,13-didehydromultiflorine perchlorate hydrate [IUPAC name: 3-(but-3-enyl)-10oxo-1,2,3,4,5,6,11,11a-octahydro-10*H*-1,5-methanopyrido[1,2-*a*][1,5]diazocinium perchlorate hydrate], $C_{15}H_{23}N_2O^+.ClO_4^-.H_2O$, a new alkaloid found in lupin plants, has been confirmed by X-ray analysis. The cation is formed by protonation of the butenyl-bonded N atom, N16. There is significant conjugation in the N1— C2=C3-C4=O4 fragment of the cation. The structure is partially disordered and the molecular packing is governed by a network of intermolecular hydrogen bonds.

Comment

An alkaloid extracted from the seeds of *Lupinus albus* (cultivar BAC) was found to have physical properties, including an IR spectrum, almost identical to those of the alkaloid known as *N*-methylalbine (Wiewiórowski & Wolińska-Mocydlarz, 1961, 1964). Investigation by means of ¹³C NMR and mass spectroscopy suggested, however, that this compound has the same structure as 11,12-seco-12,13-didehydromultiflorine rather than that of *N*-methylalbine (Wysocka & Brukwicki, 1988). In order to corroborate this assignment, we have performed an X-ray structural analysis of the perchlorate salt of the alkaloid, (I). The results of these studies show the structure to be correct.

Ring A (Fig. 1) has a distorted half-chair conformation, with atoms C5 and C6 deviating significantly and in opposite directions from the least-squares plane through the remaining four atoms [the deviations are -0.181(9) and 0.441(8) Å for C5 and C6, respectively]. The planarity of the N1--C2=-C3---C4=-O4 system, as well as the pattern of bond lengths, indicates a noticeable conjugation within the system. The A/B ring junction has a *trans* configuration [torsion angles C2-N1-C6-C5 -41.5 (5) and C7-C6-N1-C10 46.8 (5)°]. Ring B adopts a distorted chair conformation. A similar configurational/conformational pattern for the A/B ring system was observed in the structures of both multiflorine (Kubicki & Borowiak, 1989) and the multiflorine cation (Pyżalska, Gdaniec, Borowiak & Wolińska-Mocydlarz, 1980). Ring C of the title compound has a distorted chair conformation, as in the multiflorine cation, while in the multiflorine free base it has a boat conformation. This conformational change, also observed in sparteine derivatives (Kubicki, Borowiak & Boczoń, 1991, and references therein), accompanied by the inversion of configuration about the N16 atom, is a result of protonation at atom N16 and subsequent formation of the intramolecular (sparteine) or intermolecular (multiflorine) hydrogen bonds. Therefore, it would be possible for the same type of inversion to take place in

Fig. 1. Displacement ellipsoid representation of the title cation with the labelling scheme. The ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved